

		OBS	ERVA	f the Heidke	
		Below	Near	Above	Original
F	Below	1 (0.67)	0 (-0.33)	0 (-0.33)	Original Heidke score
\mathbf{O}	Near	0 (-0.33)	1 (0.67)	0 (-0.33)	(Heidke, 1926
U	Above	0 (-0.33)	0 (-0.33)	1 (0.67)	[in German])
R		OBS	ERVA	ΤΙΟΝ	
_		Below	Near	Above	Modified in
E	Below	1.125	0	-1.125	Barnston
C	Near	-0.375	0.750	-0.375	(Wea. and Forecasting,
	Above	-1.125	0	1.125	1992)
A		ОВЅ	ERVA	ΤΙΟΝ	
\mathbf{c}		Below	Near	Above	
S	Below	0.89	-0.11	-0.78	LEPS for Terciles
Т	Near	-0.11	0.22	-0.11	(Potts et al., C
•	Above	-0.78	-0.11	0.89	Climate,1996

Verification of Probabilistic Categorical Forecasts: The **Ranked Probability Skill Score (RPSS)** Epstein (1969), J. Appl. Meteor.

RPSS measures cumulative squared error between categorical forecast probabilities and the observed categorical probabilities relative to a reference (or standard baseline) forecast.

The observed categorical probabilities are 100% in the observed category, and 0% in all other categories.

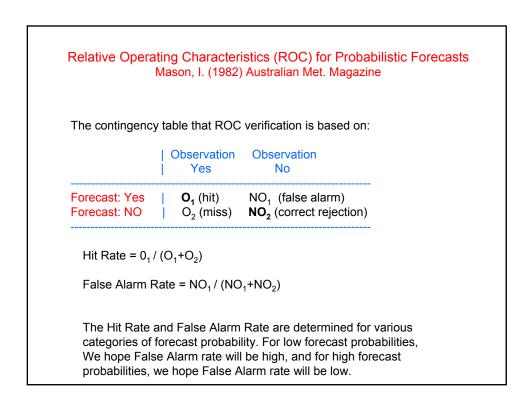
$$RPS = \sum_{cat=1}^{Ncat} (Pcum_{F(cat)} - Pcum_{O(cat)})^{2}$$

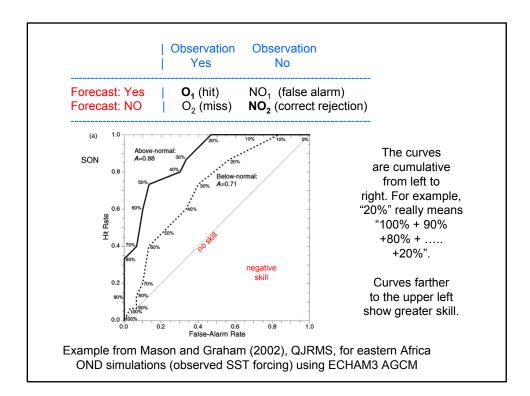
Where Ncat = 3 for tercile forecasts. The "cum" implies that the summation is done for cat 1, then cat 1 and 2, then cat 1 and 2 and 3.

$$RPS = \sum_{cat=1}^{Ncat} (Pcum_{F(cat)} - Pcum_{O(cat)})^{2}$$

The higher the RPS, the poorer the forecast. RPS=0 means that the probability was 100% given to the category that was observed.

The RPSS is the RPS for the forecast compared to the RPS for a reference forecast that gave, for example, climatological probabilities.


$$RPSS = 1 - \frac{RPS_{forecast}}{RPS_{reference}}$$


RPSS > 0 when RPS for actual forecast is smaller than RPS for the reference forecast.

		ill, and the observations were: obs(%) RPS calculation
		0 0 100 RPS= $(020)^2+(050)^2+(11)^2=.04+.25+.0=.2$
2	25 35 <mark>40</mark>	0 0 100 RPS= $(025)^2+(060)^2+(1-1.)^2=.06+.36+.0=.4$
3	25 35 <mark>40</mark>	0 0 100
4	20 35 <mark>45</mark>	0 0 100 RPS= $(020)^{2}+(055)^{2}+(11)^{2}=.04+.30+.0=.34$
5	15 30 <mark>55</mark>	0 0 100
6	25 35 <mark>40</mark>	0 0 100
7	25 35 <mark>40</mark>	$0\ 100\ 0\ RPS = (025)^2 + (160)^2 + (11.)^2 = .06 + .16 + .0 = .22$
8	25 35 <mark>40</mark>	0 0 100
9	20 35 <mark>45</mark>	0 0 100
10	25 35 <mark>40</mark>	0 0 100
11	25 35 <mark>40</mark>	0 100 0
12	20 35 <mark>40</mark>	0 100 0
13	15 30 <mark>55</mark>	0 0 100 RPS= $(0.15)^{2}+(0.45)^{2}+(1.1)^{2}=.02+.20+.0=.22$
14	25 35 <mark>40</mark>	0 0 100
15	25 35 <mark>40</mark>	0 0 100
	Findi	ng RPS for reference (climatol baseline) forecasts:
for	1 st forecast	t, RPS(clim) = $(033)^2+(067)^2+(11.)^2 = .111+.444+0=.55$
for	7th forecast	t, RPS(clim) = (033) ² +(167) ² +(11.) ² = .111+.111+0=.22

forecast(%	b) obs(%)	RPS ar	nd RPSS(clim)	RPSS
1 20 30	50 0 0 100	RPS= .29	RPS(clim)= .556	1-(.29/.556) = .48
2 25 35	40 0 0 100	RPS= .42	RPS(clim)= .556	1-(.42/.556) = .24
3 25 35	40 0 0 100	RPS= .42	RPS(clim)= .556	1-(.42/.556) = .24
4 20 35	45 0 0 100	RPS= .34	RPS(clim)= .556	1-(.34/.556) = .39
5 15 30	55 0 0 100	RPS= .22	RPS(clim)= .556	1-(.22/.556) = .60
6 25 35	40 0 0 100	RPS= .42	RPS(clim)= .556	1-(.42/.556) = .24
7 25 35				1-(.22/.222) = .01
8 25 35	40 0 0 100	RPS= .42	RPS(clim)= .556	1-(.42/.556) = .24
9 20 35				1-(.34/.556) = .39
10 25 35	40 0 0 100	RPS= .42	RPS(clim)= .556	1-(.42/.556) = .24
11 25 35	40 0 100 0	RPS= .22	RPS(clim)= .222	1-(.22/.222) = .02
12 20 35	40 0 100 0	RPS= .22	RPS(clim)= .222	1-(.22/.222) = .02
				1-(.22/.556) = .60
14 25 35	40 0 0 100	RPS= .42	RPS(clim)= .556	1-(.42/.556) = .24
15 25 35 4	40 0 0 100	RPS= .42	RPS(clim)= .556	1-(.42/.556) = .24
F	inding RPS fo	or reference	(climatol baseline	e) forecasts:
When obs	="below", RP	S(clim) = (0	33) ² +(067) ² +(1	1.) ² =.111+.444+
When obs	="normal", RI	PS(clim)=(0	33) ² +(167) ² +(1	1.) ² =.111+.111+
When obs	="above", RP	S(clim)= (0	33) ² +(067) ² +(1.	-1.) ² =.111+.444+(

RPSS for va when observ		
forecast ter		
Probabilitie	-	
- 0 +	RPSS	
100 0 0	-2.60	
90 10 0	-2.26	
80 15 5	-1.78	
70 25 5	-1.51	
60 30 10	-1.11	
50 30 20	-0.60	
40 35 25	-0.30	
33 33 33	0.00	
25 35 40		
20 30 50	0.48	
10 30 60		
5 25 70	0.83	Note: issuing too-confident forecasts
5 15 80		causes high penalty when incorrect.
0 10 90		Skills come out best for "true" probs.
0 0 100	1.00	onno como caracertor trao prese.
0 0 100	1.00	

	Observation Yes	Observation No	Hanssen and Kuipe (1965), Koninklijk Nederlands
Forecast: Yes Forecast: NO	│ O ₁ (hit) │ O ₂ (miss)	NO_1 (false alarm) NO_2 (correct rejection)	Meteorologist Institua Meded. Verhand, 81-2-15

The Hanssen and Kuipers score is derivable from the above contingency table. Hanssen and Kuipers (1965), Koninklijk Nederlands Meteorologist Institua Meded. Verhand, 81-2-15 It is defined as KS = Hit Rate - False Alarm Rate (ranges from -1 to +1, but can be scaled for 0 to +1).

KS =
$$\frac{O_1 N O_2 - O_2 N O_1}{(O_1 + O_2) - (N O_1 + N O_2)}$$

When scale the KS as KS_{scaled} = (KS+1) / 2 then the score is comparable to the area under the ROC curve.

n _{ij}	Observed Below	Observed Near	Observed Above	
Forecast Below Normal	Normal n11	Normal n12	Normal n13	n1∎
Forecast Near Normal	n21	n22	n23	n2∎
Forecast Above Normal	n31	n32	n33	n3∎
	n∎1	n∎2	n∎3	N∎∎ (total)

$$\begin{aligned} probability_{ij} &= p_{ij} = \frac{n_{ij}}{N} \\ \text{Gerrity Skill Score} = GSS = \sum_{i=1}^{3} \sum_{j=1}^{3} p_{ij}s_{ij} \quad \text{S}_{ij} \text{ is the scoring matrix} \\ s_{ii} &= \frac{1}{2} \left(\sum_{r=1}^{i-1} a_r^{-1} + \sum_{r=i}^{2} a_r \right) \\ s_{ij} &= \frac{1}{2} \left(\sum_{r=1}^{i-1} a_r^{-1} - (j-1) + \sum_{r=j}^{2} a_r \right) ; 1 \le i < 3, i < j \le 3 \end{aligned}$$
where
$$\begin{aligned} a_i &= \frac{1 - \sum_{r=1}^{i} p_r}{\sum_{r=1}^{i} p_r} \\ \text{where} \end{aligned}$$
Note that GSS is computed using the sample probabilities, not those on which the original categorizations were based (0.333, 0.333). \end{aligned}

The LEPSCAT score (linear error in probability space for categories) Potts et al. (1996), J. Climate

is an alternative to the Gerrity score (GSS)

Use of Multiple verification scores is encouraged.

Different skill scores emphasize different aspects of skill. It is usually a good idea to use more than one score, and determine more than one aspect.

Hit scores (such as Heidke) are increasingly being recognized as poor measures of probabilistic skill, since the probabilities are ignored (except for identifying which category has highest probability).